
Talha| 137

DS-CDMA Transmitter and Receiver
Talha saeed

Department of Electrical Engineering
COMSATS Institute of Information Technology (CIIT)

Islamabad, Pakistan

Zubair iftikhar
Department of Electrical Engineering

COMSATS Institute of Information Technology (CIIT)
Islamabad, Pakistan

Muhammad shoaib
Department of Electrical Engineering

COMSATS Institute of Information Technology (CIIT)
Islamabad, Pakistan

Bushra Ghouri
Department of Physics

COMSATS Institute of Information Technology (CIIT)
Islamabad, Pakistan

Abstract—this paper describes the DS-CDMA Transmitter
and Receiver for two users. This project has been
implemented on Spartan 3 FPGA by using Verilog HDL.
Five separate modules have been implemented for
transmitter which was the Convolutional Encoder, the
Frequency Divider, the Block Interleaver, the Long PN
Code, and the Walsh Code. In Receiver Side two new
modules have been added the Walsh Code, and the Viterbi
Decoder. ModelSim SE 5.7g has been used for simulation.
While ISE Webpack 10.1 Xilinx has been used for
synthesizing, mapping, and for downloading the modules
on FPGA. This DS-CDMA system contains data rates up
to 50 Mbps.
Index Terms—DS-CDMA, FPGA, transmitter, receiver

I.INTRODUCTION

CDMA provides ability to all users to use same frequency
and same time at same channel. Users are distinguished by
different codes. Even though at same carrier frequency is used
at which all stations operate, the receiving channel already
knows the specific code which is assigned to the transmitting
station [10]. From the desired station it can extract the desired
transmitted signal and will reject all other stations that are
using other codes. Spread spectrum systems have two major
types. These can be termed as Frequency Hopping (FH) and
Direct Sequence (DS) system. CDMA belongs to DS spread
spectrum system, so we will only stress upon this [5] [12]. The
transmitter structure can be divided into different components.
At first step is the convolution encoder. In this we are adding
some additional bits for making bit error checking more
successful and allow for more accurate transfer of data.
Convolutional Encoder was used with constraint length of 3 (k
= 3) and rate ½. Its mean that for every input bit it can
generates 2 output bit. After that Block Interleaver has been
used that rearranges the order of a sequence of input Symbols
for randomized the location of error, by scrambling or
rearranging the sequence of input bits. This was implemented
through 24x16 matrixes. Output of this performs XOR
operation with Long PN Code. PN code is used here for

encryption and spreading. We have implemented the PN Code
with a 42-stages shift register [10].

In next step data is multiplied with Walsh Code. The
Walsh Code are the orthogonal codes that are assigned each
and every user to distinguish each user and for spreading. The
receiver structure can be broken down into several
components. In first step data is multiplied with Walsh Code.
The output of the Walsh Code is then performs XOR
operation with Long PN Code. PN Code is used here for
privacy of user and for spreading. On receiver side the PN
Code is used to despread the signal that has been spreaded at
transmitter side. The PN Code is implemented with a 42-
stages shift register [10].

After despreading of signal the output is fed into the
Deinterlever. It performs operation on a data matrix that is the
reversed form of that operation which is performed at data
matrix in Block Interlever at transmitting side. The output of
Deinterlever is given to Viterbi Decoder. The Viterbi Decoder
uses maximum likelihood decoding that decodes the data
which has been encoded by the Convolutional Encoder at
transmitter side and finally we receive our desire data [14]
[15].

II. CONVOLUTIONAL ENCODER

A. Working Principle

Convolutional Encoder is used to take input bits and
generate a matrix of encoded outputs. It is used for channel
encoding in digital communication systems because noise can
change the actual value of the signal. So there have been
added additional bits for making bit error checking more
successful and allow for more accurate transfer of data. The
convolution encoder that was used in this DS-CDMA is of
constraint length of 3 (k = 3) and rate ½. This means that for
every bit of input it can generates a 2 bit code word. So, for
every input sequence the encoder transform in to a unique
code word sequence. The Figure 1 shows the working of
Convolutional Encoder.

Talha| 138

B. Implementation
Convolutional Encoder is a bottom level module. Two bits

right shifted register is used in this module, actually three bits
shift register is needed for Convolutional Encoder. But here
replaced the one bit of shift register with input bit due to avoid
any unsynchronization. For every input bit, Convolutional
Encoder will generate two output bits LSB and MSB. Input
bits of Convolutional Encoder arrive at data rate of ‘clock_a’
(781.250 Kbps) and output bits are generated at data rate of
‘clock_b’ (1.5625 Mbps) as shown in figure 1and 2.

C. Figures

Fig 1 Convolutional Encoder

Fig 2 Shift Register

D. Wave Diagram

Fig 3 Wave Diagram of Convolution Encoder

III. FREQUENCY DIVIDER

A. Working Principle

Frequency Divider is also bottom level module for
generating following three different frequencies which are
needed for this project. 50 Mbps (clock_d) 50 Mbps is the
global clock of Spartan 3 FPGA. It has been used in
implementation of Walsh code and Dewalsh code. It has also
been used for taking data from PC to FPGA and FPGA to PC
through UART. Pin number for system clock in xcs200 FT256
Spartan 3 FPGA is T9. 3.125 Mbps (clock_c) [11]. It is used
for generating long PN code and for XOR operation between
long PN code and data. This frequency should be 16 times less
than the clock_d (system clock) 1.5625 Mbps (clock_b) Bits
pair Convolutional Encoder in figure 3, Viterbi Decoder and
Block Interleaver are implemented through this frequency. It
should be 64 times less than the clock_c frequency. But due to
limitation of FPGA resources here it is two times less than the
clock_c frequency. 781.250 Kbps (clock_a) Arrival of data in
system is done at this clock speed. It is two less than the
clock_b frequency and four times less than the clock_c
frequency shown in figure 4.

B. Wave Diagram

Fig 4 Frequency Divider

IV. BLOCK INTERLEAVER

A. Working Principle

An interleaver rearranges the order of a sequence of input
symbols. It is used for randomized the location of error, by
scrambling or rearranging the sequence of input bits.
Interleaving spreads a burst of errors out so that error

Talha| 139

correction circuits have a better chance of correcting the data.
The interlever which is used at transmitting end must be used
the reverse of that interlever at receiving end for recover the
original data [3].

B. Implementation

In following order Block Interleaver performs its
operation.

1. Input bits in row wise from left to right and start from
top row.

2. Inter-row permutations.
3. Inter-column permutations.
4. Column-wise data out, top to bottom, starting with

the left Column

Row permutation is used in following manner.

1. 0 row -> 23 row
2. 1 row -> 0 row
3. 2 row -> 1 row
4. 3 row -> 2 row
5. . …….
6.
7. 22 row -> 21 row
8. 23 row -> 22 row

Column permutation is used in following manner.

1. 0 column -> 14 column
2. 14 column -> 15 column
3. 15 column -> 0 column

Block Interleaver is also a bottom level module. It has
contained a 24x16 size matrix for randomize the locations of
errors within 384 bits. Two 24x16 shift registers ‘hold’ and
‘block’ are used to perform the operations of this
module.(‘hold’ for input data and ‘block for output ‘data’).It
works on data rate of ‘clock_b’, ‘Hold’ and ‘block’ worked in
parallel. But at start when hold is taking first 384 input bits
then that time no previous data is available in ‘block’. So
‘block’ which is used for doing output will perform no
operation and there will be delay (time for 384 bits). After that
‘hold’ matrix is taking input of current data and ‘block’ matrix
is doing output of previous data at every positive edge of
‘clock_b’. Last input bit of current data and last output bit of
previous data will occur at same time. So ‘block’ matrix at this
time will give last output bit of previous data and will take
new data from ‘hold’ matrix and last input bit. Also shifts new
current data according to row and column permutations at
their original places. So at next pulse of ‘clock_b’ again ‘hold’

matrix is taking input of current data and ‘block’ matrix is
doing output of previous data.

Control signal 'resetn’ indicates (when changes from logic
high to logic low) that data from Block Interleaver is ready for
XOR operation and it will set to logic ‘0’ when Block
Interleaver starts to give outputs.

C. Wave Diagram

Fig 5 Wave Diagram of Block Interleaver

In the above wave diagram ‘blk_output’ is zero its means
that Block Interleaver has not completed his matrix of 24x16.
So at start when hold is taking first 384 input bits then at that
time no previous data is available in the matrix. Therefore
‘block’ matrix which is used for doing output will perform no
operation. So that’s why ‘blk_output’ is zero.

Fig 6 Wave Diagram of Block Interleaver

In the above figure 6 yellow line indicates that now
‘block’ matrix is doing output through ‘blk_output’ of
previous data at every positive edge of ‘clock_b’. And hold’
matrix is taking input of current data if data is available at
input.

V. LONG PN CODE

A. Working Principle

Talha| 140

In the forward channel, direct sequence is used for data
scrambling. Each user has assigned the long PN sequence
code with period 2^42-1 chips [12]. The long PN code is
specified by the following characteristic polynomial.

P(x) = X^42 + X^35 + X^33 + X^31 + X^27 + X^26
+X^25+ X^22 + X^21 + X^19 + X^18 + X^17 +X^16 +
X^10+X^7 + X^6 + X^5 + X^3 + X^2 + X^1 + 1…….. (1)
It is used to both spread the signal and to encrypt it [8] as in
figure 7.

Figure 7 Architecture of Long PN Code

B. Implementation

Long PN Code is the bottom level module. It is
implemented with 42 bits shift register and 19 XOR
operations. This specification is according to IS-95 standards.
This module works at data rate of ‘clock_c’. When control
signal ‘resetn’ changes from logic high to logic low then at
start all 42 shift registers store the logic high value ‘1’. After
that according to architectural of shift registers, values are
shifted. Last shift register ‘sr[41]’ is used for ‘long_pn_out’
and for feedback mechanism shown in figure 8.

C. Wave Diagram

Fig 8 Wave Diagram of Long PN Code

VI. WALSH CODE

A. Working Principle

All the Walsh Codes are orthogonal to each other, which
means that the cross correlation between Walsh Code with
each other is zero [6].The main functionality of Walsh codes
in CDMA is to provide orthogonally among all the users in a
cell so that they can uniquely identifies. Each user traffic
channel is assigned a different Walsh code by the base station
[6]. For IS-95, 64 codes are available. In other words, a base
station can talk to a maximum of 64 mobiles at the same time.
Whereas CDMA 2000 can use up to 256 such codes. Walsh
Code is constructed by Haddamard matrices. The code length
is the size of the matrix. Each row is one Walsh Code of size
N. The first matrix gives us two codes; 11, 10. The second
matrix gives: 1111, 1010, 1100, 1001 and so on [6].

B. Implementation
4x4 Hadamard metrics was used for assigning Walsh

Code to each user. Row number one contains all ‘1’ so this
row did not assign to any user [17]. Row number two is
assigned to user one and row number three is assigned to user
two as shown in figure 9.

Figure 9 Walsh Code for User 1 and 2

Talha| 141

Fig 10 Procedure of Walsh Code

Calculated sixteen bits values for all four possible
combinations of two users have been used as we can see in the
Figure 10. ‘clock_d’ is sixteen times greater than the
‘clock_c’. Therefore time duration at which input data remains
(occurring at the rate of ‘clock_c’), so at that time sixteen
Walsh output bits (occurring at the rate of ‘clock_d’) will be
generated for that particular input. As shown in Figure 11.

C. Wave Diagram

Fig 11 Wave Diagram of Walsh Code

VII. INTERFACING OF TRANSMITTER MODULES

A. Implementation
PC was used for storing data in FPGA and for showing

results back to PC. For this purpose UART module was
implemented in FPGA with two FSM for transmitter and
receiver [11]. This serial communication system

communication is done through serial cable so did not need
for modulation like QPSK. So here is the communication of
Baseband Transmitter and Receiver in this project. In the
following Diagram Fig. 12, we can see interfacing of blocks in
Transmitter side.

Figure 12 Interfacing of Transmitter Modules
Initially data is taken from PC to UART module at

Transmission line ‘tx’. It is T13 pin number in Spartan 3
FPGA. It will take data at a frame size of 8 bits at the rate of
‘clock_d’. UART module gives each frame at this rate to store
unit. Store Unit is the small portion in main module of
Transmitter. Due to memory and resources limitation of FPGA
we can take only 32 bits for each user. F12 pin of FPGA has
been used here as enabling pin of system so when presses this
switch then whole system will starts to work. ‘Enable’ signal
will be given at all modules. But before press ‘enable’ we
must need to store data for two units in store unit. So at start of
system Store Units gives a bit at a rate of ‘clock_a’ to the
Convolutional Encoder. Stores unit also performs the addition
of two zeros after every four output bits as a requirement of
Viterbi Decoder. Because Viterbi Decoder must need two
zeros at the end of frame for going back to initial state at next
frame. After addition of two zeros total bits for each user will
be 48 bits. Frequency Divider provides the frequencies to
different blocks according to their requirements [14].

At the next stage Convolutional Encoder will generate the
output at a rate of ‘clcok_b’. And after that total number of
each user bits will be 96. Meanwhile when Convolutional
Encoder output is not ready Block Interleaver will not start to
work [15]. We have put delay in Block Interleaver for this
purpose. In addition to these two Convolutional Encoders and
all next blocks from here to Long PN Code will work parallel
for both users. So here total bits of each user will become 192.
At next when Block Interleaver output is ready it will enable
the PN code and then Block Interleaver output and PN code
chip will perform XOR operation at a spreading factor of
two[10].

After this, spreaded data of both users will come to Walsh
Code. So that the time at which each bit of two users remains
in this module the Walsh Code performs Scrambling and

Talha| 142

generates sixteen output bits. At this output, system total bits
will be 3072, reduced it into 384 bits by using Encoder due to
FPGA resources limitation. After that it stored the data in
UART by LIFO (Last in First Out) technique. And at the end
by pressing ‘transmit’ switch L13 pin in Spartan 3 FPGA,
data from UART will go back to PC. And PC will show
the resultant values at Matlab with fread(s) command
[15].
B. Wave Diagram

Fig 13 Wave Diagram of Transmitter
From figure 13 when ‘resetn’ at time 616us changes from

logic ‘1’ to logic ‘0’ then ‘block_long_PN_sum’, ‘blk_output’
and long_pn_out’ will be started their functions. Block
Interleaver output is available at third cycle of ‘clock_c’ when
‘resetn’ goes from ‘1’ to ‘0’ logic, Synchronization between
‘long_pn_out’ and ‘blk_output, ‘long_pn_out’, which works
on ‘clock_c’ will be delayed until Block Interleaver output
will become available. When both arrive on third ‘clock_c’
cycle, then on fourth cycle PN operation will start due to next
state of flip flops. Each sixteen Walsh output values are
encoded into two values which have been shown in wave form
by ‘u_out’ signal. So when each sixteen bits frame of Walsh
output completes then ‘tx_put’ signal goes high for two
‘clock_d’ pulses and for that time it will stores the value of
‘u_out’ on UART. Basically ‘tx_put’ enables the UART for
two ‘clock_d’ pulses for storing resultant values of transmitter
after every sixteen ‘clock_d’ pulses.

VIII. DE WALSH

A. Implementation

De Walsh is bottom level module at receiver side. It
performs the operation for separating two user data. Each
sixteen bits frame which has been decoded by Decoder arrives
at De Walsh input on sixteen ‘clock_d’ pulses. At each pulse it

will store input data in two different registers or matrices with
the size of 4x4 for each user de Walsh operation. And then De
Walsh performs multiplication of data with each user Walsh
Code. After that it performs the addition of each user data
(addition of rows). During this addition and multiplication
procedure, it also stores incoming data in two matrices. Finally
when sixteen input bits are completed then it gives output bit
for each user at the rate of ‘clock_c’ on next ‘clock_d’ pulse.
According to the decision, this has been taken on the MSB bit
of ‘sum_one’ and ‘sum_two’. If the MSB of these registers is
‘1’ then output will be ‘0’ and if the MSB of these registers is
‘0’ then output will be ‘1’.

B. Wave Diagram

Fig 14 Wave Diagram of De Walsh
After every sixteen ‘clock_d’ cycles it will generates the

corresponding output value for each user at the frequency of
‘clock_c’. As shown in the Figure 14. Output which is
generated in this diagram has been the same sequence as it
was given at the input of Walsh Code at transmitter Side.

IX. VITERBI DECODER

A. Working Principle

In this system Viterbi Decoding algorithm is using as a
Convolutional Decoder, to decode the code sequence that has
been encoded by the Convolutional Encoder at transmitter
side. For decoding of code sequences either be represented by
tree or trellis structure. Here we are only using trellis structure
for purpose of decoding.

B. Implementation

Viterbi Decoder is also bottom level module of receiver.
Viterbi Decoder has main advantage is to remember the only
four paths from thirty-two paths at every transition. Decision
of choosing best four paths is according to paths hamming
metric. The Viterbi Decoder here decodes the code word
sequence of input 12 bits into 6 output bits, whereas first 4 bits
are information bits while remaining 2 bits are zeros. Because

Talha| 143

it starts every frame from first state so it has needed two zeros
at end of previous frame for going back to first state for next
state as we can see in Fig. 15.

Fig 15 FSM of Convolutional Encoder

C. Wave Diagram
Input Convolved data is given to Viterbi Decoder at the

rate of ‘clock_b’. And it will generate six output bits for each
twelve input bits frame at the rate of ‘clock_a’. Containing
four data bits and two zero bits in output frame. Here is the
example where an input frames with adding error at six and
eight bits. But Viterbi Decoder decodes the frames and gives
accurate output as we can see in wave diagram Fig. 16. Output
data sequence: 1 1 0 1 Original code word: 11 01 01 00
Transmitted code word: 11 01 00 01.

Fig 16 Wave Diagram of Viterbi Decoder

Here signal ‘path’ gives the output frame of six bits after
completing twelve bits input frame.

X. INTERFACING OF RECEIVER MODULES

A. Implementation

PC is used for storing data in FPGA and for showing
results back to PC. For this purpose UART module was
implemented in FPGA with two FSM for transmitter and
receiver. In the following Diagram Fig.17, we can see
interfacing of blocks in Receiver side.

Figure 17 Interfacing of Receiver Modules
Initially data is taken from PC to UART module at

transmission serial line ‘rx’. It is T13 pin number in Spartan 3
FPGA. It will take data at a frame size of 8 bits at the rate of
‘clock_d’. UART module gives each frame at this rate to store
unit. Store Unit is the small portion in main module of

Talha| 144

Receiver. Due to memory and resources limitation of FPGA
we can take only 32 bits for each user. F12 pin of FPGA has
been used here as enabling pin of system so when we presses
this switch then whole system will starts to work. ‘Enable’
signal is given at all modules. But before pressing ‘enable’
switch we must need to store data of transmitter output to store
unit. Through Frequency Divider, provides the frequencies to
different blocks according to their requirements. So at start of
system Store Units gives a bit at a rate of ‘clock_d’ to the
Decoder. This performs decoding of 384 bits into 3072 bits
and also gives input bit at ‘clock_d’ pulse to De Walsh. De
Walsh separates two user data at the frequency of ‘clock_c’. In
addition to this when De Walsh output is ready then it enables
PN Code for PN operation. After that XOR operation will be
performed between De Walsh output and PN Code chip with
the spreading rate of two. So, when PN Codes enables Block
De Interleaver, then it starts work and finally data goes to
Viterbi Decoder. Here in system each module will enable next
module when its output is ready. After decoding at Viterbi
Decoder we remove two zero bits after every four output bits,
which have been added due to Viterbi Decoder, which starts
its procedure from first state. Here this procedure is running in
parallel for both users. At the end data is stored back to UART
for both users (32 bits for each user) and by pressing
‘transmit’ switch L13 pin in Spartan 3 FPGA data from
UART will go back to PC. And PC will show the resultant
values at matlab with fread(s) command.
B. Wave Diagram

Fig 18 Wave Diagram of Receiver
From figure 18 we see that before De Walsh gives it first

output bit it enables the PN Code for initial position

(‘pn_enable’) at before one ‘clock_d’ pulse. And when De
Walsh gives output signal for both users (‘data_one’ and
‘data_two’) then there is operation of XOR between individual
bits of each user and PN Chip (‘long_out_one’,
long_out_two’).

Fig 19 Wave Diagram of Receiver

Here in Fig. 19 ‘fnl_frame_one’ shows the thirty two
output bits of user one and ‘fnl_frame_two’ shows the thirty
two output bits of user two. This is same sequence as it was
given at the transmitter input for each user.

ACKNOWLEDGMENT

Our great reverence and humble thanks to Almighty
Allah, who bestowed upon us enough vigor and urge to work
and to finish the task undertaken by us. We are highly grateful
to our supervisor Fahad Sharif, without whom this project
would never have been transformed into reality. He gives us
an opportunity for uninhibited work and their thoughts
provoking feedback, instilled upon us new ideas.

CONCLUSION
CDMA is different approach in wireless communication

systems. It has gained widespread international acceptance by
cellular radio systems.

Its spread spectrum technology is more secure and less
probable to intercept and jam. Moreover it is highly private
and it also provides high transmission quality than TDMA.
Clearly the CDMA is the next generation technology in terms

Talha| 145

of Voice and data transmissions over the AIR. Even though
the cryptographic algorithms for CDMA have been broken,
CDMA interception has a long way to go. This means that the
CDMA transmissions will remain secure at least for few years
from now.

REFERENCES

[1] Imamura, Kimihiko. "Wireless communication transmitter and
receiver." U.S. Patent No. 7,251,288. 31 Jul. 2007,

[2] Michelson, Arnold M., and Allen H. Levesque. "Error-control
techniques for digital communication." New York, Wiley-
Interscience, 1985, 483 p. 1 (1985).
[3] Student, Mrs Kokila KS PG. "Physical Layer Implementation Of
Orthogonal Frequency Division Multiplexing For Software Defined
Radio On FPGA."
[4] Vucetic, Branka, and Savo Glisic. Spread spectrum CDMA

systems for wireless communications. Artech House, Inc., 1997.
[5] Schilling, Donald L., Raymond L. Pickholtz, and Laurence B.
Milstein. "Spread spectrum goes commercial." Spectrum, IEEE 27.8
(1990): 40-41.
[6] Lee, Kwang-Su. "Method for allocating Walsh codes by group in
a CDMA cellular system." U.S. Patent No. 6,473,395. 29 Oct. 2002.
[7] Dinan, Esmael H., and Bijan Jabbari. "Spreading codes for direct
sequence CDMA and wideband CDMA cellular
networks." Communications Magazine, IEEE 36.9 (1998): 48-54.
[8] Embedded System Design: A Unified Hardware/Software
Approach by Frank Vahid and Tony Givargis.
[9] Vanhaverbeke, Frederik, Marc Moeneclaey, and Hikmet Sari.
"DS/CDMA with two sets of orthogonal spreading sequences and
iterative detection."Communications Letters, IEEE 4.9 (2000): 289-
291.
[10] Shao, Xiaoyin, and Dong Sun. "A FPGA-based motion control
IC design."Industrial Technology, 2005. ICIT 2005. IEEE
International Conference on. IEEE, 2005.
[11] Chouly, Antoine, Americo Brajal, and Sabine Jourdan.
"Orthogonal multicarrier techniques applied to direct sequence spread
spectrum CDMA systems."Global Telecommunications Conference,
1993, including a Communications Theory Mini-Conference.
Technical Program Conference Record, IEEE in Houston.
GLOBECOM'93., IEEE. IEEE, 1993.
[12] Ikeda, Yasunari, Tamotsu Ikeda, and Takahiro Okada.
"Transmission of data by using convolutional coding of different
code rates and the encoded data reception including decoding of the
received data." U.S. Patent No. 5,691,995. 25 Nov. 1997.
[13] Viterbi, Andrew J., and Nagabhushana T. Sindhushayana. "Soft

decision output decoder for decoding convolutionally encoded
codewords." U.S. Patent No. 5,933,462. 3 Aug. 1999.
[14] Astrachan, Paul M. "Convolutional encoder for use on an
integrated circuit that performs multiple communication tasks." U.S.
Patent No. 5,612,974. 18 Mar. 1997.
[15] Wisal, Nausheen. "Comparative Analysis of MIMO Simulation
with Transmit and Receive Diversity." International Journal of
Technology and Research 1.3 (2013).
[16] Khan, M. Umar, Imad Siraj, and Nadeem Javaid. "Analytical
Evaluation of Proactive Routing Protocols with Route Stabilities
under two Radio Propagation Models." COCORA 2013, The Third
International Conference on Advances in Cognitive Radio. 2013.
[17] Ghauri, Sajjad Ahmed. "Priority based Bandwidth Allocation in
Cognitive Radio Network using Cooperative Game
Theory." International Journal of Technology and Research 1.3
(2013).

